首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16349篇
  免费   1216篇
  国内免费   575篇
电工技术   2592篇
综合类   911篇
化学工业   5001篇
金属工艺   305篇
机械仪表   377篇
建筑科学   284篇
矿业工程   178篇
能源动力   2725篇
轻工业   1093篇
水利工程   89篇
石油天然气   2365篇
武器工业   13篇
无线电   108篇
一般工业技术   454篇
冶金工业   560篇
原子能技术   483篇
自动化技术   602篇
  2024年   17篇
  2023年   169篇
  2022年   353篇
  2021年   402篇
  2020年   401篇
  2019年   326篇
  2018年   313篇
  2017年   333篇
  2016年   391篇
  2015年   446篇
  2014年   1072篇
  2013年   1043篇
  2012年   1264篇
  2011年   1230篇
  2010年   935篇
  2009年   867篇
  2008年   748篇
  2007年   1134篇
  2006年   1021篇
  2005年   923篇
  2004年   829篇
  2003年   743篇
  2002年   619篇
  2001年   520篇
  2000年   476篇
  1999年   334篇
  1998年   236篇
  1997年   193篇
  1996年   166篇
  1995年   152篇
  1994年   114篇
  1993年   72篇
  1992年   64篇
  1991年   55篇
  1990年   38篇
  1989年   38篇
  1988年   22篇
  1987年   18篇
  1986年   4篇
  1985年   12篇
  1984年   7篇
  1983年   2篇
  1982年   12篇
  1981年   2篇
  1980年   9篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1959年   5篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
针对国内某炼油厂延迟焦化加热炉三点注汽问题,采用热负荷自动调节的算法进行了研究。运用该模型方法,分析了三点注汽量对加热炉热负荷和炉管结焦系数的影响,发现三点注汽量的改变均会对热负荷和炉管结焦系数产生影响,主要表现为提高注汽量将会提高热负荷,同时降低结焦系数;第1点注汽量和第2点注汽量对热负荷和结焦系数的影响较强,第3点注汽量对热负荷和结焦系数的影响较弱。在实际操作中,加热炉中的结焦程度既不能太强也不能太弱,合适的结焦系数能够保证正常开工周期里炉管不结焦,也能保证瓦斯、注汽量等参数的合理分配。通过对热负荷、注汽量的智能分配,可得到不同原料油加工负荷条件下更加合理的装置运行方案。  相似文献   
12.
采用Aspen plus软件对工业七塔精馏过程进行全流程建模与模拟,优化工艺参数,研究了新的精馏节能工艺。对一甲塔等7个精馏塔采用双因素水平的灵敏度分析,考察了塔釜采出率、回流比、进料位置和塔顶压力对产品浓度和热负荷的影响,确定一甲塔最优的工艺参数:塔釜摩尔采出率为0.92,摩尔回流比为130,塔顶压力为0.18 MPa,总理论板数为400,在210块理论板位置进料。在此基础上,针对高能耗的脱高塔/脱低塔,模拟研究了双效精馏新工艺,新工艺可节省39.70%的年总成本;针对一甲塔模拟研究了热泵精馏新工艺,新工艺可降低41.42%的年总成本。  相似文献   
13.
实验研究了不凝性气体(空气)含量、水温和蒸汽质量流速对蒸汽浸没射流冷凝压力振荡特性的影响,实验工况横跨冷凝振荡(CO)区和稳定冷凝(SC)区。结果表明:对于纯蒸汽射流,压力振荡主频随水温的升高而降低,振荡强度随水温的升高而升高;在CO区,振荡主频和振荡强度均随蒸汽质量流速的升高而升高;在SC区,振荡主频随蒸汽质量流速的升高而降低,振荡强度基本上不随蒸汽质量流速的变化而发生改变;对于含空气射流,随空气质量分数的增加,振荡主频总体呈下降趋势,振荡强度先迅速下降后小幅上升,在空气质量分数为0.05~0.1区域内振荡主频和振荡强度均存在极小值。  相似文献   
14.
As an alternative to the energy-intensive evaporation-crystallization method, membrane distillation crystallization (MDC) was applied for the first time to obtain calcium nitrate crystals from its aqueous solution. Calcium nitrate solution was obtained through the reaction between calcium carbonate and nitric acid, and then it was concentrated in the membrane distillation (MD) process and further crystallized. The MD step was conducted using hydrophobic polyvinylidene fluoride (PVDF)/sorbitan trioleate (Span 85) membranes. Span 85 was incorporated into the membrane structure in various concentrations to improve the hydrophobicity of membranes, and the resultant membranes were characterized via different methods. In addition, the resultant calcium nitrate crystals were characterized by X-ray fluorescence (XRF) spectroscopy. The MDC results showed that the optimum amount of Span 85 in the polymeric solution was 4%, which led to the formation of a membrane with higher porosity (67.2%) and water contact angle (95.7°) compared to the neat PVDF membrane. The mentioned membrane exhibited the highest water flux in the MD process compared to the other membranes, and also it produced the highest amount of crystals due to its remarkably better performance in the MD step in terms of feed concentration.  相似文献   
15.
16.
17.
A hybrid multiphase model is developed to simulate the simultaneous momentum, heat and mass transfer and heterogeneous catalyzed reaction in structured catalytic porous materials. The approach relies on the combination of the volume of fluid (VOF) and Eulerian–Eulerian models, and several plug-in field functions. The VOF method is used to capture the gas–liquid interface motion, and the Eulerian–Eulerian framework solves the temperature and chemical species concentration equations for each phase. The self-defined field functions utilize a single-domain approach to overcome convergence difficulty when applying the hybrid multiphase for a multi-domain problem. The method is then applied to investigate selective removal of specific species in multicomponent reactive evaporation process. The results show that the coupling of catalytic reaction and interface species mass transfer at the phase interface is conditional, and the coupling of catalytic reaction and momentum transfer across fluid–porous interface significantly affects the conversion rate of reactants. Based on the numerical results, a strategy is proposed for matching solid catalyst with operating condition in catalytic distillation application.  相似文献   
18.
The effect of non-uniform temperature on the sorption-enhanced steam methane reforming (SE-SMR) in a tubular fixed-bed reactor with a constant wall temperature of 600 °C is investigated numerically by an experimentally verified unsteady two-dimensional model. The reactor uses Ni/Al2O3 as the reforming catalyst and CaO as the sorbent. The reaction of SMR is enhanced by removing the CO2 through the reaction of CaO + CO2 → CaCO3 based on the Le Chatelier's principle. A non-uniform temperature distribution instead of a uniform temperature in the reactor appears due to the rapid endothermic reaction of SMR followed by an exothermic reaction of CO2 sorption. For a small weight hourly space velocity (WHSV) of 0.67 h?1 before the CO2 breakthrough, both a low and a high temperature regions exist simultaneously in the catalyst/sorbent bed, and their sizes are enlarged and the temperature distribution is more non-uniform for a larger tube diameter (D). Both the CH4 conversion and the H2 molar fraction are slightly increased with the increase of D. Based on the parameters adopted in this work, the CH4 conversion, the H2 and CO molar fractions at D = 60 mm are 84.6%, 94.4%, and 0.63%, respectively. After CO2 breakthrough, the reaction of SMR dominates, and the reactor performance is remarkably reduced due to low reactor temperature.For a higher value of WHSV (4.03 h?1) before CO2 breakthrough, both the reaction times for SMR and CO2 sorption become much shorter. The size of low temperature region becomes larger, and the high temperature region inside the catalyst/sorbent bed doesn't exist for D ≥ 30 mm. The maximum temperature difference inside the catalyst/sorbent bed is greater than 67 °C. Both the CH4 conversion and H2 molar fraction are slightly decreased with the increase of D. However, this phenomenon is qualitatively opposite to that for small WHSV of 0.67 h?1. The CH4 conversion and H2 molar fraction at D = 60 mm are 52.6% and 78.7%, respectively, which are much lower than those for WHSV = 0.67 h?1.  相似文献   
19.
Hydrogen is a potential green energy vector. Since the heating of the reforming processes commonly used for its production is obtained by burning hydrocarbons, it has a substantial CO2 footprint. One of the most critical aspects in the methane steam reforming (MSR) reaction is the heat transfer to the catalytic volume, due to the high heat fluxes required to obtain high methane conversions. Consequently, the reactor has complex geometries, along with the heating medium being characterized by temperatures higher than 1000 °C; expensive construction materials and high reaction volumes are therefore needed, resulting in slow thermal transients. These aspects increase the costs (both operative and fixed) as well as cause a decrease in the whole process efficiency. The heat transfer limitations due to the endothermicity of methane steam reforming reaction could be effectively overcome by microwave (MW) heating. This heating technique, that depends only on the dielectric properties of the materials, can result in an efficient and faster method for transferring heat directly to the catalyst, thus generating the heat directly inside the catalytic volume. In this work, Ni-based catalysts, differing from each other by the Ni loading (7 and 15 wt% with respect to the washcoat) were prepared. The catalysts were characterized by means of several techniques and tested in the MW-assisted methane steam reforming reaction. Furthermore, the energy balance of the entire process was performed to calculate the energy efficiency, making a preliminary evaluation of its feasibility in distributed hydrogen production also possible. The results of the preliminary tests showed that the prepared structured catalysts are very susceptible to the MW radiation, and that in the presence of the MSR reaction, it is possible to make the system reach a temperature of 900 °C. In the same tests, the CH4 conversion showed a good approach to the thermodynamic equilibrium values starting at temperatures of about 800 °C at a value of gas hourly space velocity (GHSV) of about 5000 h?1. The energy efficiency of the lab-scale system, calculated as the ratio among the energy absorbed by the system and the energy supplied by the microwaves, was about 50%. Future studies will deal with the microwave reactor optimization, aiming at the increase of the energy efficiency of the system, as well as to obtain a higher CH4 conversion at lower temperatures and increase the H2 yield and selectivity.  相似文献   
20.
A comprehensive study was conducted on the performance of M-promoted (M = 1%Ru, 1%Rh, 5%Ni) upgraded slag oxide metallurgical waste catalysts (M-UGSO) for hydrogen production by glycerol steam reforming (GSR). The results confirmed that the tendency of the incorporated metal to interact with Mg/Fe containing species within UGSO plays a key role in the surface availability of the corresponding metal, structural changes after reduction, and catalyst stability. Aside its best stability, 5% Ni-UGSO showed a performance (glycerol conversion to gaseous products of 100% and H2 yield of 74%) comparable with 1% Rh-UGSO (100% and 78%, respectively) or even surpassing that of 1% Ru-UGSO (94% and 71%, respectively), as noble metal-based catalysts. Synergistic cooperation was achieved by incorporated metals (M) and Fe/Mg containing species within UGSO, resulting in enhanced glycerol and water activation. The weakest results of Ru-UGSO could be justified by lack of propensity for MgO–RuO2 interaction on UGSO surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号